What Computers Do Hospitals Use?

What Computers Do Most Hospitals Use?

Most hospitals use a variety of computer systems and devices to support their operations and provide healthcare services. The specific types of computers and systems used can vary depending on the hospital’s size, budget, and specific needs. Here are some of the common types of computers and systems used in hospitals:

  • Electronic Health Record (EHR) Systems: EHR systems are the backbone of modern healthcare facilities. These systems are typically accessed through desktop computers or workstations, and they store patient medical records, including medical history, treatment plans, test results, and more. Common EHR software providers include Epic Systems, Cerner, and Allscripts.  Tangent computers are Epic and Cerner compliant. 
  • Workstations on Wheels (WOWs): These are mobile computer carts equipped with computers or tablets on wheels. They are used by healthcare professionals, such as nurses and doctors, for bedside patient charting, medication administration, and accessing EHRs.
  • Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (PACS): Radiology departments use specialized computer systems to manage and store medical images, including X-rays, MRIs, and CT scans. RIS and PACS systems are often connected to workstations used by radiologists.
  • Administrative Computers: Hospitals use administrative computers for tasks such as billing, scheduling, and managing hospital operations. These computers are often standard desktop or laptop computers. Tangent offers medical grade options of these devices that offer many benefits including preventing the spread of virus. 
  • Clinical Decision Support Systems: These systems assist healthcare providers in making clinical decisions by providing access to evidence-based guidelines and medical literature. They are typically accessed through desktop computers.
  • Laboratory Information Systems (LIS): Laboratories in hospitals use LIS to manage test orders, sample tracking, and test results. Computers in the laboratory are often dedicated to these tasks.
  • Pharmacy Information Systems: Hospitals employ pharmacy information systems to manage medication orders, dispensing, and inventory. Pharmacists and pharmacy technicians use computers for these purposes.
  • Mobile Devices: Healthcare professionals often use mobile devices such as tablets and smartphones to access patient records, reference materials, and communicate with colleagues. These devices may be integrated into the hospital’s network and security protocols.
  • Servers and Data Centers: Hospitals maintain servers and data centers to store and manage sensitive patient data, ensuring its security and accessibility.
  • Telemedicine and Telehealth Systems: With the growth of telehealth services, hospitals may use specialized video conferencing and telemedicine software, which can be accessed from a variety of devices, including desktop computers, laptops, tablets, and smartphones.

It’s important to note that the specific computer systems and devices used in hospitals can vary widely, and the choice of technology may depend on factors such as the hospital’s budget, infrastructure, and the availability of IT support. Additionally, hospitals must adhere to strict regulations and security standards to protect patient information, which can influence their choice of technology and software.

Why should hospitals use medical grade computers?

Hospitals should use medical-grade computers for several important reasons:

  1. Infection Control: Medical-grade computers are designed with infection control in mind. They often feature sealed, easy-to-clean surfaces that can withstand disinfection with harsh chemicals. This is critical in healthcare settings, where preventing the spread of infections is paramount.
  2. Durability: These computers are built to withstand the rigors of a hospital environment. They are often made with high-quality materials that can endure constant use, frequent cleaning, and exposure to a variety of environmental conditions.
  3. Safety and Compliance: Medical-grade computers comply with safety and regulatory standards specific to the healthcare industry, such as UL 60601-1 for electrical safety and IEC 60601-1-2 for electromagnetic compatibility. Ensuring compliance with these standards is essential for patient safety.
  4. Ergonomics: Medical-grade computers are designed to accommodate the specific needs of healthcare professionals. They often include features like adjustable mounting options and easy access to ports for attaching medical devices.
  5. Compatibility with Medical Equipment: These computers are often equipped with specialized interfaces and connectors to connect to medical devices like patient monitors, infusion pumps, and diagnostic equipment. This facilitates the integration of these devices into the hospital’s electronic health record (EHR) system.
  6. Longevity: Hospitals typically require reliable and long-lasting equipment. Medical-grade computers are built to provide consistent performance and have a longer lifespan compared to consumer-grade devices.
  7. Data Security: Healthcare facilities handle sensitive patient information, and medical-grade computers are designed with enhanced security features to protect this data. They often include hardware encryption, secure boot processes, and other security measures to prevent data breaches.
  8. Support and Service: Hospitals can expect better customer support and service for medical-grade computers. Manufacturers understand the unique demands of the healthcare industry and are more likely to provide responsive support and timely maintenance services.
  9. Regulatory Compliance: Medical-grade computers are designed to assist healthcare facilities in meeting regulatory requirements, such as HIPAA (Health Insurance Portability and Accountability Act) for patient data protection. Using non-compliant equipment could result in costly penalties.
  10. Seamless Integration: Medical-grade computers are built with healthcare-specific software and applications in mind. They are more likely to integrate seamlessly with electronic health record (EHR) systems, picture archiving and communication systems (PACS), and other healthcare software.
  11. Reduced Downtime: The reliability and durability of medical-grade computers lead to reduced downtime, which is crucial in healthcare. Healthcare professionals can’t afford to have their computers fail during critical patient care tasks.

In summary, medical-grade computers are purpose-built for healthcare environments, emphasizing infection control, safety, durability, and compliance with industry-specific regulations. Investing in these computers helps hospitals provide a higher standard of care, improve efficiency, and protect patient data while ensuring the longevity and reliability of their computing infrastructure.